1 Variance and Covariance

1.1 Concepts

	Distribution	PMF	E(X)	Variance
1.	Uniform	If $\#R(X) = n$, then	$\sum_{i=1}^{n} \frac{x_i}{n}$	$\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n}$
		$f(x) = \frac{1}{n}$ for all $x \in$		
		R(X).		
	Bernoulli Trial	f(0) = 1 - p, f(1) = p	p	Var(X) = p(1-p)
	Binomial	$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
	Geometric	$f(k) = (1-p)^k p$	$\frac{1-p}{p}$	$Var(X) = \frac{1-p}{p^2}$
	Hyper-Geometric	$f(k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	$\frac{nm}{N}$	$\frac{nm(N-m)(N-n)}{N^2(N-1)}$
	Poisson	$f(k) = \frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ

The **Variance** is defined as $Var(X) = E((X - \mu)^2)$. An easier form is $E(X^2) - E(X)^2$. It satisfies some properties:

- Var(c) = 0
- $Var(cX) = c^2 Var(X)$
- Var(X + Y) = Var(X) + V(Y) for **independent** random variables.

The **Standard Error** is defined as $SE(X) = \sqrt{Var(X)}$. We use it to get the same units as X.

The **Covariance** is defined as Cov(X, Y) = E[XY] - E[X]E[Y]. It measures how "independent" two random variables are. For **independent** random variables, we have Cov(X, Y) = 0. Note that we can recover the definition of regular variance because the covariance of a random variable with itself is $Cov(X, X) = E[X^2] - E[X]^2 = Var(X)$. We can update the formula for the variance of the sum of two random variables as Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) which holds for **all** random variables. Properties that hold for the random variable are:

- Cov(X, Y) = Cov(Y, X)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)
- Cov(X, cY) = cCov(X, Y) for any constant c
- Cov(X, c) = 0 for any constant c

1.2 Examples

2. Let X be a uniform random variable with range $\{-1, 0, 1\}$. Let $Y = X^2$. Calculate Cov(X, Y).

1.3 Problems

- 3. True False For independent random variables X, Y we have Var(X Y) = Var(X) Var(Y).
- 4. True False The product of two Bernoulli trials is another Bernoulli trial.
- 5. True False If c is a constant, then Var(X + c) = Var(X).
- 6. True False The covariance of two random variables is always ≥ 0 .
- 7. True False For random variables X, Y and constants c, d, we have Cov(X + c, Y + d) = Cov(X, Y).
- 8. While pulling out of a box of cookies, what is the expected number of cookies I have to pull out before I pull out an oatmeal raisin if 20% of cookies are oatmeal raisin? What is the variance?
- 9. I flip a coin some number of times and I expected to see 90 heads with a standard deviation of 3 heads. What is the probability that I actually see 95 heads?
- 10. I am at a casino and play a game and am expected to gain 10 cents per play with a variance of 1^{\$2} if I bet \$10. What is the expected value and variance when I bet \$100 instead?
- 11. Prove the short cut formula for variance from the definition of variance.
- 12. Suppose that I flip a fair coin 10 times. Let T be the number of tails I get and H the number of heads. Calculate E[T], E[H], Var[T], Var[H], Var[T + H]. Now calculate E[T H] and Var[T H].

2 Average of Random Variables

2.1 Concepts

13. For X_i independent and identically distributed (i.i.d.) (e.g. rolling a die multiple times) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$, then the average that we get (e.g. the average number that we roll) is **approximately** normal distributed with mean μ and standard deviation σ/\sqrt{n} . So

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is approximately normally distributed with $E[\bar{X}] = \mu$ and $Var(\bar{X}) = \sigma^2/n$.

2.2 Examples

- 14. Show that the distribution of \overline{X} , the average of n i.i.d. random variables with mean μ and standard deviation σ has mean μ and standard deviation σ/\sqrt{n} .
- 15. Suppose that the height of women is distributed with an average height of 63 inches and a standard deviation of 10 inches. Taking a sample of 100 women, what is the expected value and standard deviation for the average height?

2.3 Problems

- 16. True False For a constant $c \ge 0$, we have that SE(cX) = cSE(X).
- 17. True False Suppose that I roll a fair die 100 times. Then since the expected value of the average die roll is 3.5, I will roll a 1, 2, or 3 50 times and a 4, 5, or 6 50 times.
- 18. Suppose the weight of newborns is distributed with an average weight of 8 ounces and a standard deviation of 1 ounce. Today, there were 25 babies born at the Berkeley hospital. What is the expected value and variance of the average weight of these babies?
- 19. Suppose that the average lifespan of a human is 75 years with a standard deviation of 10 years. What is the mean and standard error of the average lifespan of a class of 25 students?
- 20. Suppose that in the 2012 election, 55% of people preferred Obama over Romney. If I sample 100 random people (assume that they are independently chosen), what is the expected value and variance for the percentage of the people sampled who support Obama?
- 21. The newest Berkeley quarterback throws an average of 0.75 TDs/game with a standard deviation of 1. What is his expected value and standard deviation for the number of TDs he throws next season (16 total games)?
- 22. Let X_1, \ldots, X_4 be i.i.d Bernoulli trials with $p = \frac{3}{4}$. Let \bar{X} be the average of them. What is $Var[\bar{X}]$? Find $Cov(X_1, \bar{X})$ (Hint: Write $\bar{X} = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$).